viernes, 30 de noviembre de 2007

LOS METODOS ANTICONCEPTIVOS

Un método anticonceptivo es cualquier forma de impedir la fecundación o concepción al mantener relaciones sexuales. También se llama contracepción o anticoncepción. Los métodos anticonceptivos son una forma de control de la natalidad.

Tipos de métodos anticonceptivos [editar]

Métodos naturales [editar]
Los métodos naturales de conocimiento de la fertilidad, se basan en la observación de síntomas asociados a los procesos fisiológicos que dan lugar a la ovulación y a la adaptación de la sexualidad a las fases fértiles o infértiles del ciclo en función de que se desee o no una concepción. Superados ya los métodos predictivos, como el famoso método de Ogino/Knauss, y técnicas ancestrales como el Coitus interruptus; hoy en día su fiabilidad es similar a la de otros métodos no quirúrgicos.{Frank-Herrmann y cols. Hum Reprod 2007}ffffffffeeeeeeee
La Organización Mundial de la Salud clasifica los métodos modernos de planificación familiar natural como buenos o muy buenos, con valores de
índice de Pearl menores de 1. La Sociedad Española de Ginecología y Obstetricia ha publicado un documento consenso sobre los métodos naturales de PFN.
Estos métodos de planificación familiar son apoyados y promovidos por la
Iglesia Católica para la vivencia y el ejercicio de lo que esa institución denomina una paternidad responsable, como queda reflejado en la Encíclica Humanae Vitae. Son métodos que, para que puedan ser utilizados como métodos seguros de control de la fertilidad, requieren cierto grado de disciplina en la autoobservación/anotación y un correcto aprendizaje con materiales y personal bien preparado. Una crítica a estos métodos es la de que no previenen el SIDA o cualquier otra enfermedad de transmisión sexual, ya que al igual que la píldora anticonceptiva, el anillo vaginal y otros métodos no naturales, que implican contacto físico directo, no se protegen de dichas enfermedades.
De los métodos naturales no son recomendables el método Ogino/Knauss ni el coitus interruptus por falta de eficacia. En cuanto a los métodos modernos, el más eficaz es el síntotérmico con doble control, significativamente superior en eficacia sobre el Método de la Ovulación.

Métodos simples [editar]
Temperatura basal: El método de la temperatura basal se sirve del aumento que la progesterona induce en la temperatura corporal interna de la mujer durante la ovulación y determina, una vez diagnosticada, infertilidad postovulatoria. Para ello la mujer deberá determinar la temperatura corporal interna a lo largo del ciclo menstrual. El método de la temperatura basal estricto circunscribe el periodo de infertilidad a los días posteriores a la subida de temperatura exclusivamente. El método de la temperatura basal extendido define, cumplidas ciertas condiciones, 6 días de infertilidad preovulatoria. El método de la temperatura basal es áltamente fiable en el periodo postovulatorio, y supone la base de la mayoría de los métodos naturales modernos. Sin embargo tiene limitaciones a la hora de determinar la infertilidad preovulatoria.
Método de la ovulación (método Billings y otros): El método de la ovulación se basa en la observación diaria de los cambios del moco cervical a lo largo del ciclo femenino, cambios que se asocian a los aumentos en los niveles de estrógenos previos al momento de la ovulación. Normalmente, las fases de infertilidad de la mujer se caracterizan por una ausencia de moco cervical visible y una sensación de sequedad vaginal. Conforme se acerca el momento de la ovulación el moco cervical se hace a lo largo de varios días y de forma progresiva, cada vez más líquido, elástico y transparente. Próximo al momento de la ovulación se produce el llamado pico de moco caracterizado por un cambio abrupto de las propiedades el moco y su posible desaparición. El moco cervical es un signo de fertilidad y por ello su observación puede ser utilizado para el control de la fertilidad. Aunque, aplicado correctamente, puede ser considerado un método seguro, es inferior al método de la temperatura en fase postovulatoria. Su utilización es especialmente apto para la consecución del embarazo en casos de hipofertilidad ya que permite concentrar las relaciones sexuales en torno al momento de mayores probabilidades de embarazo. Como método anticonceptivo es especialmente inseguro en mujeres con ciclos monofásicos (durante la menarquia o antes de la menopausia.
Método de la amenorrea de la lactancia (MELA) Después de parto existe un período más o menos largo de inactividad ovárica y, por tanto, de infertilidad. Dicho tiempo de infertilidad depende básicamente de si la mujer amamanta o no al bebé, así como de la intensidad de la lactancia materna. El método MELA define los criterios que deben cumplirse para una aplicación segura del método para la regulación de la fertilidad.

Métodos compuestos [editar]
Método sintotérmico: Combina el método de la temperatura basal, para el diagnóstico de la infertilidad postovulatoria, en combinación con otra serie de síntomas (moco cervical, cuello del útero, entre otros) y cálculos de longitud de ciclos para la determinación de la infertilidad preovulatoria. Permite beneficiarse de la práctica infalibilidad de la temperatura basal a la hora de determinar la infertilidad postovulatoria y aumentar considerablemente la eficacia en periodo preovulatorio. Su eficacia es equivalente a las modernas preparaciones de anovulatorios orales y solamente inferior a la esterilización quirúrgica. Una ventaja adicional que que es un método válido e igualmente eficaz en todas las circunstancias de la vida reproductiva de la mujer (período post-parto, período post-píldora, premenopausia, etc).

Métodos de barrera [editar]
Preservativo. Tiene una versión femenina (Preservativo femenino)[1]
Diafragma. Una variedad más pequeña de éste es el capuchón cervical.
LeaContraceptivum. Un tamaño, él permanece en lugar debido a la succión.
Los métodos de barrera impiden la entrada de esperma a la vagina.
Los condones masculinos son recubrimientos delgados de caucho, vinilo o productos naturales que se colocan sobre el pene erecto. Los condones masculinos pueden ser tratados con espermicida para ofrecer mayor protección. Los condones masculinos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH y el SIDA) pasen de un miembro de la pareja a otro (sólo los condones de látex y vinilo.)
Los condones femeninos son un recubrimiento delgado de plástico poliuretano con aros de poliuretano en extremos opuestos. Estos se introducen en la vagina antes del coito. Al igual que los condones masculinos, los condones femeninos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH y el SIDA) pasen de un miembro de la pareja a otro

Métodos químicos y hormonales [editar]

Píldora anticonceptiva
Espermicidas. Los espermicidas son productos químicos (por lo general, nonoxinol 9) que desactivan o matan a los espermatozoides. Están disponibles en aerosoles (espumas), cremas, tabletas vaginales, supositorios o películas vaginales disolubles. Los espermicidas causan la ruptura de las membranas de los espermatozoides, lo cual disminuye su movimiento (motilidad y movilidad), así como su capacidad de fecundar el óvulo.
La
anticoncepción hormonal se puede aplicar de diversas formas.
Vía oral, por la
Píldora anticonceptiva
Anticonceptivo subdérmico. Implante compuesto por una varilla del tamaño de un cerillo que se coloca por debajo de la piel del brazo de la mujer, ofreciendo protección anticonceptiva por tres años sin ser definitivo, el médico que ha recibido capacitación puede retirarlo en cualquier momento retornando la mujer en un tiempo mínimo a la fertilidad.
Anillo vaginal. Único de administración vaginal mensual. Es el método más innovador en anticoncepción femenina: un anillo transparente, suave y flexible que se coloca por la misma usuaria por vía vaginal liberando diariamente las dosis más bajas de hormonas.
Píldora trifásica. Método anticonceptivo altamente eficaz de dosis hormonales bajas con un balance hormonal suave y escalonado que imita al ciclo fisiológico de la mujer en forma secuencial progresiva etapa reproductiva brindando estricto control del ciclo, además reduce la grasa facial. También puede ser indicado para el tratamiento de acné leve a moderado.
Píldora 0 estrógenos. Píldora anticonceptiva libre de estrógenos, recomendada para mujeres que no pueden o no desean tomarlos; la dosis hormonal es tan ligera que entre otras indicaciones es la única píldora recetada durante la lactancia.
Píldora postcoito. Método hormonal de uso ocasional. El anticonceptivo postcoito, también conocido como anticoncepción de emergencia, se trata de la administración de un producto hormonal no abortivo que evita la ovulación y de esta forma previene el embarazo en aquellas mujeres que tuvieron relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección, incluyendo los casos de violación.
Aunque este tratamiento se conoce también como "la píldora del día siguiente", el término puede ser engañoso pues debe utilizarse inmediatamente después de tener relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección; puede tomarse en un periodo de hasta 72 horas.
También hay anticoncepción hormonal que suprime durante la
regla.
Actualmente la anticoncepción hormonal másculina está en desarrollo.
Parches anticonceptivos.
Mediante
anillos vaginales.

Método combinado [editar]
Considerado por muchos como el método anticonceptivo por excelencia, debido a su alta efectividad (similar a la píldora) y a que no posee muchos de los cuestionamientos religiosos de la píldora. Consiste en combinar el uso de preservativo masculino con una crema espermaticida (eg. Delfen). La crema se coloca con un aplicador especial que viene con el envase y el hombre utiliza el preservativo de la manera habitual. Tiene la ventaja agregada de lubricar el canal vaginal y así facilitar la penetración.

Dispositivo intrauterino (DIU) [editar]
Es un método que, mediante la colocación en el interior del útero de un dispositivo plástico con elementos metálicos (ej. cobre), se produce una alteración del microclima intrauterino que dificulta de gran manera la fecundación y también la implantación del óvulo fecundado.

Dispositivo Intrauterino

Métodos anticonceptivos irreversibles [editar]
Son parcialmente irreversibles:
Ligadura de trompas, o salpingoclasia. Consiste en ligar las trompas de falopio con grapas a fin de impedir que el óvulo se implante en el útero o que los espermatozoides se encuentren con él.
Vasectomía. Es una operación quirúrgica para seccionar los conductos deferentes que transportan a los espermatozoides de los testículos al exterior cuando se eyacula. Una vez realizada, los espermatozoides que a diario se producen son reabsorbidos por el organismo. Puesto que el líquido seminal es elaborado en la próstata, la vasectomia no impide la eyaculación. Es un proceso reversible aunque con dificultades.
Castración

Métodos de emergencia [editar]
Píldora del día después. Tiene bastantes efectos secundarios.
El
método de Yuzpe tiene una tasa de fallos de hasta el 2% si la mujer lo ha usado en forma correcta, lo cual representa una disminución considerable del riesgo de embarazo, comparado con el no uso de anticoncepción de emergencia. Dependiendo cuando la mujer utilice las píldoras como anticoncepción de emergencia durante el ciclo menstrual, la combinación puede prevenir la ovulación, fertilización o la implantación, se cree que básicamente modifica el revestimiento endometrial impidiendo la implantación. El método de Yuzpe no es abortivo y no es eficaz cuando el proceso de implantación se ha iniciado.
El
aborto no es un método anticonceptivo, porque la concepción ya se ha producido. Además tiene el riesgo de cualquier operación.
De todos estos métodos sólo los preservativos y el femy disminuyen la posibilidad de contraer una
enfermedad venérea. En algún caso el diafragma puede evitar algún tipo de infección, pero no es eficaz como método general de prevención.

Prácticas alternativas [editar]
Como alternativa se puede mantener otro tipo
relaciones sexuales sin coito para evitar o reducir la posibilidad de embarazo, y en caso del petting también se evitan las enfermedades venéreas, aunque en otras prácticas, como el sexo anal el riesgo es mayor. En cualquier caso si el semen alcanza de entrada de la vagina puede producirse embarazo.
El
sexo oral evita el embarazo y el riesgo de contraer alguna enfermedad es sólo algo menor.
El
sexo anal, como ya se ha dicho, tiene mayor riesgo de enfermedades

LA SEXUALIDAD

La sexualidad es el conjunto de condiciones anatómicas, fisiológicas y psicológico-afectivas del mundo animal que caracterizan cada sexo. También es el conjunto de fenómenos emocionales y de conducta relacionados con el sexo, que marcan de manera decisiva al ser humano en todas las fases de su desarrollo.
Durante siglos se consideró que la sexualidad en los animales y en los hombres era básicamente de tipo
instintivo. En esta creencia se basaron las teorías para fijar las formas no naturales de la sexualidad, entre las que se incluían todas aquellas prácticas no dirigidas a la procreación.
Hoy, sin embargo, se sabe que también algunos
mamíferos muy desarrollados, como los delfines o algunos pingüinos, presentan un comportamiento sexual diferenciado, que incluye, además de homosexualidad (observada en más de 1500 especies de animales),[1] variantes de la masturbación y de la violación. La psicología moderna deduce, por tanto, que la sexualidad puede o debe ser aprendida.

Sexualidad humana
Al igual que los otros primates, los seres humanos utilizan la excitación sexual con fines reproductivos y para el mantenimiento de vínculos sociales, pero le agregan el goce y el placer propio y el del otro. El sexo también desarrolla facetas profundas de la afectividad y la conciencia de la personalidad. En relación a esto, muchas culturas dan un sentido religioso o espiritual al acto sexual (Véase Taoísmo, Tantra), así como ven en ello un método para mejorar (o perder) la salud.
La complejidad de los comportamientos sexuales de los humanos es producto de su
cultura, su inteligencia y de sus complejas sociedades, y no están gobernados enteramente por los instintos, como ocurre en casi todos los animales. Sin embargo, el motor base de gran parte del comportamiento sexual humano siguen siendo los impulsos biológicos, aunque su forma y expresión dependen de la cultura y de elecciones personales; esto da lugar a una gama muy compleja de comportamientos sexuales. En muchas culturas, la mujer lleva el peso de la preservación de la especie.
Desde el punto de vista psicológico,la sexualidad es la manera de vivir la propia sexuación. Es un concepto amplio que abarca todo lo relacionado con la realidad sexo. Cada persona tiene su propio modo de vivir el hecho de ser mujer u hombre, su propia manera de situarse en el mundo en tanto que tales. La sexualidad incluye la identidad sexual y de género que constituyen la conciencia de ser una persona sexuada, con el significado que cada persona dé a este hecho. La sexualidad se manifiesta a través de los roles genéricos que, a su vez, son la expresión de la propia identidad sexual y de género.
La diversidad sexual nos indica que existen muchos modos de ser mujer u hombre, más allá de los rígidos estereotipos, siendo el resultado de la propia biografía, que se desarrolla en un contexto sociocultural. Hoy en día se utilizan las siglas GLTB (o
LGTB) para designar al colectivo de Gays, Lesbianas, Transexuales y Bisexuales.
La sexualidad se manifiesta también a través del deseo erótico que genera la búsqueda de placer erótico a través de las relaciones sexuales, es decir, comportamientos sexuales tanto autoeróticos (masturbación), como heteroeróticos (dirigidos hacia otras personas, éstos a su vez pueden ser heterosexuales u homosexuales). El deseo erótico, que es una emoción compleja, es la fuente motivacional de los comportamientos sexuales. El concepto de sexualidad, por tanto, no se refiere exclusivamente a las “relaciones sexuales”, sino que éstas son tan sólo una parte de aquel.

EVOLUCION DE LOS SERES VIVIOS



La Era de los mamíferos

Se calcula que hace 180 millones de años, cuando aún dominaban los reptiles el planeta, aparecieron los primeros mamíferos sobre la Tierra. La multitud de especies de mamíferos que comenzaron a desarrollarse a partir de entonces eran muy diferentes a las que actualmente conocemos y muchas de ellas han desaparecido por completo.
Las cerca de 5 mil especies de mamíferos conocidos en la actualidad se agrupan en órdenes, como son: cetáceos, carnívos, marsupiales, roedores, desdentados, entre otros. De los distintos órdenes, los seres humanos, así como sus ancestros más lejanos, pertenecen al de los primates.
Los primates
Para losel punto de inicio de la historia de la humanidad empezó con la aparición de los primates, hace unos 65 millones de años. Los primeros de ellos eran unos pequeños seres que empezaron a vivir en los árboles en lugar de permanecer en el suelo, como la mayoría de los mamíferos. Entre las especies que pertenecen a los primates están, además del ser humano, los simios, monos y musarañas. Durante su desarrollo evolutivo, estos primates se hicieron de ciertos rasgos especiales: buena visión, manos con las que se pueden sujetar firmemente objetos y un cerebro relativamente grande.
Por pertenecer a la misma familia, las diferentes especies de primates, en especial monos y simios, guardan similitud con el ser humano. Según algunos estudiosos, el último ancestro común entre el ser humano y el chimpancé, nuestro primo más cercano, existió hace 6 ó 7 millones de años. Después de esta separación apareció el primer , el llamado Australopithecus, que posteriormente dio lugar al Homo habilis, el primer especímen del género Homo, al que pertenecemos los seres humanos modernos.
Los cambios en la biología de los primates que desembocaron en los primeros homínidos se dieron en África: en el Este y en el Sur. El cañon de Olduvai, en Tanzania, el noreste de Africa, es uno de los lugares donde se han encontrado los fósiles más antiguos que aportan datos sobre la historia evolutiva del ser humano.
Homínidos
Los límites que señalen el comienzo y el final de los distintos homínidos no son exactos, se calcula que aparecieron hace 4.5 millones de años y se extinguieron hace unos 2 millones de años. Durante mucho tiempo debieron coexistir diferentes tipos, y el final de una especie se entremezcló con las generaciones de otra en el transcurso de miles de años.
Los científicos distinguen entre varias especies de homínidos. Todos ellos comparten algunas
características básicas:
Pueden mantenerse erguidos y caminar en dos pies Tienen un cerebro relativamente grande en relación con el de los monos Su mano tiene un dedo pulgar desarrollado que les permite manipular objetos.
Australopithecus
El Australopithecus es el homínido más antiguo que se conoce. Australopithecus quiere decir "simio sudafricano" y se estima su antigüedad hasta en 4 millones de años.
En 1925, el paleontólogo Raymond Dart descubrió el cráneo de un Australopithecus en Taung, al sur de África. El descubrimiento de este fósil, ancestro del ser humano e íntimamente relacionado con el mono, provocó polémica porque se encontró en África y hasta entonces se había fundado el origen del ser humano en Europa. En lugares cercanos a este descubrimiento se encontraron otras especies de Australopithecus (afarensis, africanus, robustus, boisei), que confirmaron el origen del hombre en África.
Sus restos demostraron que estos homínidos medían más de un metro de estatura y que sus caderas, piernas y pies se aparecían más a los de los seres humanos que a los de los simios. El cerebro se asemejaba al de estos animales y tenía un tamaño similar al del gorila. La mandíbula era grande y el mentón hundido. Caminaban erguidos y podían correr, a diferencia de los simios. Sus largos brazos acababan en manos propiamente dichas, con las yemas de los dedos planas, como las de los seres humanos. Se cree que estos seres eran carnívoros, pues a su alrededor se han encontrado huesos y cráneos que habían sido machacados para extraer el tuétano y los sesos.
Quizá la especie más famosa de Australopithecus es la Australopithecus afarensis, gracias al descubrimiento, en 1974 en Hadar, Etiopía, de los restos de , una joven mujer de la que se encontraron 52 huesos de un esqueleto semicompleto, con una edad aproximada de 3.2 millones de años. Esta especie trepaba árboles pero también podía caminar en dos pies. Durante mucho tiempo se pensó en Lucy como la abuela de la humanidad. Sin embargo, esta especie pudo haberse extinguido sin que a partir de ella se continuaran las ramas de la evolución humana.

Un descubrimiento reciente: El Kenyanthropus platyops
El género Homo
La evolución del hombre. Hace algún tiempo, el diagrama hubiera sido una línea recta, pero en la actualidad los especialistas piensan que la situación fue más compleja. La mayoría de los científicos aceptan que hay dos grandes grupos, o géneros, de homínidos en los últimos 4 millones de años. Uno de ellos es el género Homo, que apareció hace 2.5 millones de años y que incluye por lo menos tres especies: Homo habilis, Homo erectus, Homo sapiens. Uno de los grandes misterios de los estudiosos de la prehistoria es cuándo, cómo y dónde el género Homo remplazó a los Australopithecus.
Arbol genealógico que representa la posible

Homo habilis y Homo erectus
En zonas del este de África se encontraron restos de otros homínidos que existieron al mismo tiempo que los Australopithecus, lo que viene a demostrar que esta especie de homínidos no era la única sobre la Tierra hace dos o tres millones de años. Como los homínidos que se encontraron parecen mucho más "hombres", se les ha puesto el nombre de Homo. La primera especie del género Homo apareció hace 2.5 millones de años y se dispersó gradualmente por Africa, Europa y Asia.
En sus primeras manifestaciones se le conoce como Homo habilis, y tenía una capacidad craneana de 680 cm3 y su altura alcanzaba el metro y 55 cms. Era robusto, ágil, caminaba erguido y tenía desarrollada la capacidad prensil de sus manos. Sabía usar el fuego, pero no producirlo, y se protegía en cuevas. Vivía de recolectar semillas, raíces, frutos y ocasionalmente comía carne.
La especie que se desarrolló posteriormente a esta se denomina Homo erectus, hace 1.5 millones de años. La diferencia fundamental del Homo erectus y los homínidos que lo antecedieron radica en el tamaño, sobre todo del cerebro. Su cuerpo es la culminación de la evolución biológica de los homínidos: era más alto, más delgado, capaz de moverse rápidamente en dos pies, tenía el pulgar más separado de la mano y su capacidad craneana llegó a ser de 1250 cm3. También fabricó herramientas, como el hacha de mano de piedra, y aprendió a conservar el fuego, aunque no podía generarlo. Los científicos creen que esta especie se propagó hacia el Norte, por Europa (hasta Francia) y Asia, durante 4 000 años. Esta especie duró diez veces más tiempo de la que lleva sobre la tierra el ser humano moderno. Entre los Homo erectus que se han encontrado restos están el "Hombre de Java" (700 mil años) y el "Hombre de Pekín" (400 mil años).

Homo sapiens neanderthalis
Una o más subespecies del Homo erectus evolucionaron hasta llegar al Homo sapiens, un nuevo tipo físico. Los restos más antiguos del Homo sapiens tienen una edad entre 250 mil y 50 mil años. En sentido estricto se le denomina Homo sapiens neanderthalis: el hombre de Neanderthal. Recibe este nombre por el lugar dónde se encontró el primer cráneo que demostraba la existencia de su especie, en el valle de Neander, en Alemania.
Los hombres de Neanderthal tenían el cerebro de mayor tamaño y el cráneo distinto que del Homo erectus. Su mentón estaba hundido y su constitución era muy gruesa. Esta especie se encontró desde Europa occidental y Marruecos hasta China, pasando por Irak e Irán.
Los neanderthales estaban más capacitados y eran mentalmente más avanzados que ningún otro ser que hubiera habitado en la Tierra anteriormente. Esta especie humana vivió la última glaciación y se adaptó a ella construyendo hogares excavados en el suelo o en cavernas y manteniendo hogueras encendidas dentro de ellos. Los neanderthales que vivían en las zonas del norte de Europa fueron cazadores y se especializaron en atrapar a los grandes mamíferos árticos: el mamut y el rinoceronte lanudo, cuyos restos llevaban arrastrando hasta la entrada de sus cuevas, en donde los cortaban en pedazos.
Los hombres de Neanderthal se cubrían con pieles y disponían de mejores útiles de piedra que sus antepasados. Además realizaban una actividad novedosa: enterraban a sus muertos con gran esmero (p.e. en Asia se encontró un niño de Neanderthal enterrado entre un círculo de cuernos de animales). Los muertos no sólo eran enterrados cuidadosamente, sino que también el muerto era provisto de utensilios y comida. Es posible que los enterramientos y los vestigios de rituales en los que aparecen animales señalen los inicios de la religión. Tal vez creían ya en una especie de continuación de la vida después de la muerte.
El hombre de Neaderthal desapareció bruscamente, su lugar fue ocupado por los hombres modernos, hace unos 35 mil años.

Homo sapiens sapiens
Después del Neanderthal vino el Homo sapiens sapiens, que es la especie a la cual pertenecemos los seres humanos modernos. Se han encontrado restos de los primeros miembros de esta rama en el Cercano Oriente y los Balcanes, fechados entre el 50 mil y el 40 mil antes de Nuestra Era. Quizá avanzaron hacia el norte y occidente a medida que retrocedía el hielo. Estos seres humanos también cruzaron el estrecho de Bering, penetrando así en el continente americano y llegaron a Australia hace unos 25 mil años.
Los Homo sapiens sapiens se extendieron por la Tierra más que ninguno de los primates anteriores. Un grupo prehistórico de esta especie fueron los hombres de Cro-Magnon (32 mil años), llamados así por la cueva cercana a la aldea de Les Eyzies, Francia, donde fueron hallados sus restos óseos. Los cro-magnones vivieron la última glaciación y aunque su cerebro no era mayor que el del hombre de Neanderthal, le dieron nuevos usos pues, entre otras cosas, hicieron y mejoraron muchos instrumentos y armas. Los cro-magnones son también los artistas más antiguos. El hombre actual no difiere básicamente ni en capacidad cerebral, ni en postura, ni en otros rasgos físicos, del modelo que la evolución había logrado en el hombre de Cro-Magnon.
Para los biólogos, todos los seres humanos formamos parte de la misma especie (Homo sapiens sapiens) aunque hay distintas razas. Las líneas generales de distribución racial se iniciaron en la Prehistoria. Desde el punto de vista físico se pueden reconocer por lo menos cuatro categorías raciales fundamentales: negroide, caucasoide, mongoloide, australoide.
Lo que dio al hombre moderno su control sobre la Tierra no fue su físico, sino su capacidad de aprovechar y transmitir a sus descendientes la información cultural por medio de su inteligencia.
Un cerebro para sobrevivir

GENATICA Y HERENCIA

LA GENÉTICA estudia la forma como las características de los organismos vivos, sean éstas morfológicas, fisiológicas, bioquímicas o conductuales, se transmiten, se generan y se expresan, de una generación a otra, bajo diferentes condiciones ambientales.
La genética, pues, intenta explicar cómo se heredan y se modifican las características de los seres vivos, que pueden ser de forma (la altura de una planta, el color de sus semillas, la forma de la flor; etc.), fisiológicas (por ejemplo, la constitución de determinada proteína que lleva a cabo una función específica dentro del cuerpo de un animal), e incluso de comportamiento (en la forma de cortejos antes del apareamiento en ciertos grupos de aves, o la forma de aparearse de los mamíferos, etc.). De esta forma, la genética trata de estudiar cómo estas características pasan de padres a hijos, a nietos, etc., y por qué, a su vez, varían generación tras generación.
La genética es la disciplina unificadora de las ciencias biológicas, ya que sus principios generales se aplican a todos los seres vivos. En todas las áreas de la Biología se recurre a los conceptos que gobiernan la
herencia, cuando se trata de explicar la variabilidad existente en la naturaleza, así como también cuando el hombre transforma la naturaleza para su beneficio. El mejoramiento de plantas y animales, la comprensión de la patología humana y producción de medicamentos por medio de la biotecnología, son apenas algunos ejemplos.
La genética es la ciencia que se ocupa del estudio de la estructura y función de los genes en los diferentes organismos, así como también del comportamiento de los genes a nivel de poblaciones.
El desarrollo de nuevos métodos para la investigación genética en los últimos años, ha transformado a esta disciplina en el centro de la biología y de la medicina en particular. Así por ejemplo, el estudio de los principios genéticos básicos y sus aplicaciones en el diagnóstico, es de suma importancia en todas las profesiones relacionadas con la salud.
Además de su relevancia teórica para las ciencias biológicas, los principios de la genética tienen importantes aplicaciones prácticas, ya sea en la producción de vegetal, tanto de alimentos como productos de interés industrial o farmaceutico, así como en la salud humana y la produccíon y salud animal.

La mitosis
La
mitosis es el tipo de división nuclear que tiene lugar cuando se ha de generar células con igual número de cromosomas de la célula madre. Se divide en cuatro fases:
- Profase. Se inicia cuando empiezan a condensarse las fibras de ADN hasta formar las dos
cromátidas, unidas por el centrómero. Se forma el complejo centriolar, constituido por un centriolo y un procentriolo y el material pericentriolar o centrosoma, a partir del cual se forman los microtúbulos que formarán el huso acromático. Se despolimeriza la lámina nuclear y se rompe la envoltura. Se forma la placa cinetocórica en el centrómero.
- Metafase. Debido al alargamiento de los microtúbulos cinetocóricos, los cromosomas quedan equidistantes a ambos complejos centriolares, disponiéndose en la mitad del huso y constituyendo la placa ecuatorial.
- Anafase. Se inicia con la separación de las dos cromátidas hermanas, que constituyen el cromosoma metafásico, formando el cromosoma anafásico con una sola cromátida. La anafase acaba cuando un juego de cromosomas anafásicos llega a un polo y el otro juego al polo opuesto.
- Telofase. Comienza a unirse la lámina nuclear a los cromosomas, facilitando la formación de la nueva envoltura nuclear. Los cromosomas empiezan a desenrollarse, lo que posibilita la transcripción y la formación de la región organizadora nucleolar.


Citocinesis
- La división de las células animales se realizan por estrangulación del citoplasma. Comienza al final de la anafase, cuando aparece el surco de división como resultado de la formación del anillo contráctil interno. El anillo está formado por polímeros de actina.
La meiosis
La
meiosis es la división celular que permite la reproducción sexual. Comprende dos divisiones sucesivas: una primera división meiótica, que es una división reduccional, ya que de una célula madre diploide (2n) se obtienen dos células hijas haploides (n); y una segunda división meiótica, que es una división ecuacional, ya que las células hijas tienen el mismo número de cromosomas que la célula madre (como la división mitótica). Así, dos células n de la primera división meiótica se obtiene cuatro células n. Igual que en la mitosis, antes de la primera división meiótica hay un período de interfase en el que se duplica el ADN. Sin embargo, en la interfase de la segunda división meiótica no hay duplicación del ADN.

Primera división meiótica
- Profase I. Es la más larga y compleja, puede durar hasta meses o años según las especies. Se subdivide en: leptoteno, se forman los cromosomas, con dos cromátidas; zigoteno, cada cromosoma se une íntimamente con su homólogo; paquiteno, los cromosomas homólogos permanece juntos formando un bivalente o tétrada; diploteno, se empiezan a separar los cromosomas homólogos, observando los quiasmas; diacinesis, los cromosomas aumentan su condensación, distinguiéndose las dos cromátidas hermanas en el bivalente.
- Metafase I. La envoltura nuclear y los nucleolos han desaparecido y los bivalentes se disponen en la placa ecuatorial.
- Anafase I. Los dos cromosomas homólogos que forman el bivalente se separan, quedando cada cromosoma con sus dos cromátidas en cada polo.
- Telofase I. Según las especies, bien se desespiralizan los cromosomas y se forma la envoltura nuclear, o bien se inicia directamente la segunda división meiótica.

Segunda división meiótica
Está precedida de una breve interfase, denominada intercinesis, en la que nunca hay duplicación del ADN. Es parecida a una división mitótica, constituida por la profase II, la metafase II, la anafase II y la telofase II.

BILOGIA MOLECULAR

La Biología Molecular es el estudio de la vida a un nivel molecular. Esta área se solapa con otros campos de la Biología y la Química, particularmente Genética y Bioquímica. La biología molecular concierne principalmente al entendimiento de las interacciones de los diferentes sistemas de la célula, lo que incluye muchísimas relaciones, entre ellas las del ADN con el ARN, la síntesis de proteínas, el metabolismo, y el cómo todas esas interacciones son reguladas para conseguir un afinado funcionamiento de la célula.
Al estudiar el comportamiento biológico de las moléculas que componen las células vivas, la Biología molecular roza otras ciencias que abordan temas similares: así, p. ej., juntamente con la
Genética se interesa por la estructura y funcionamiento de los genes y por la regulación (inducción y represión) de la síntesis intracelular de enzimas (v.) y de otras proteínas. Con la Citología, se ocupa de la estructura de los corpúsculos subcelulares (núcleo, nucléolo, mitocondrias, ribosomas, lisosomas, cte.) y sus funciones dentro de la célula. Con la Bioquímica estudia la composición y cinética de las enzimas, interesándose por los tipos de catálisis enzimática, activaciones, inhibiciones competitivas o alostéricas, etc. También colabora con la Filogenética al estudiar la composición detallada de determinadas moléculas en las distintas especies de seres vivos, aportando valiosos datos para el conocimiento de la evolución.
Sin embargo, difiere de todas estas ciencias enumeradas tanto en los objetivos concretos como en los métodos utilizados para lograrlos. Así como la Bioquímica investiga detalladamente los
ciclos metabólicos y la integración y desintegración de las moléculas que componen los seres vivos, la Biología molecular pretende fijarse con preferencia en el comportamiento biológico de las macromoléculas (ADN, ARN, enzimas, hormonas, etc.) dentro de la célula y explicar las funciones biológicas del ser vivo por estas propiedades a nivel molecular.

¿Qué es el DNA?
Podemos considerar el DNA o ácido desoxiribonucleico, como el }cerebro~ celular que regula el número y naturaleza de cada tipo de estructura y composición celular, transmitiendo la información hereditaria y determinando la estructura de las proteínas, que a través de enzimas determinará el resto de funciones celulares.
A finales del siglo pasado se descubrió también la existencia de una segunda clase de ácido nucleico, denominado ácido ribonucleico (RNA). El RNA se encuentra tanto en el núcleo (concretamente en el nucleolo) como en el citoplasma de las células de manera abundante.
Ambos tipos de ácido nucleico, DNA y RNA, se encuentran simultáneamente en organismos eucariotas (con células de núcleo diferenciado) y procariotas (bacterias, etc.), y sólo uno de ellos en los virus.
COMPOSICIÓN DE LOS ÁCIDOS NUCLEICOS
Los ácidos nucleicos polímeros de alto peso molecular constituidos por unidades elementales denominadas }nucleótidos~, los cuales están formados por tres componentes:
1. Molécula de azúcar
ð Ribosa, en el caso del RNA
ð Desoxirribosa, en el caso del DNA
2. Base orgánica nitrogenada
ð Adenina, guanina (bases púricas), citosina y timina (bases pirimidínicas) en el caso del DNA.
ð Adenina, guanina (bases púricas), citosina y uracilo (bases pirimidínicas) en el caso del RNA.
3. Grupos fosfato

Los nucleótidos se unen formando cadenas cuyo esqueleto está formado por la unión entre un azúcar de un nucleótido y el fosfato del siguiente, quedando las bases nitrogenadas en la parte central, unidas cada una al C1 del azúcar. Estas bases son las que rinden especificidad al ácido nucleico.

ESTRUCTURA DEL DNA

Estructura primaria
La estructura primaria viene dada por la secuencia de nucleótidos. Cuando se quiere representar la secuencia de un oligonucleótido o de un ácido nucleico, se representa mediante la terminología de cada una de las bases. Por ejemplo:
5'-ATCCCAGCCCGATTAAAGCC-3'
Esta secuencia representa un oligonucleótido con 20 bases, de las cuales 6 son adeninas (A), 3 son timinas (T), 8 son citosinas (C) y 3 guaninas (G).
El orden de la secuencia es muy importante, ya que en él reside la información contenida en el ácido nucleico; la orientación viene dada en el sentido 5' à 3' ó 3' à 5'; el 5' representa el extremo terminal del fosfato y el 3' el extremo final del átomo de carbono de la desoxirribosa.
Estructura secundaria
Edwin Chargaff analizando las bases del DNA mediante métodos cromatográficos descubre, que éstas no se encuentran en la misma proporción y que el número de adeninas es igual al de timinas y el de citosinas, al de guaninas.
En 1953 James Watson y Francis Crick construyeron un modelo tridimensional del DNA con la configuración más favorable energéticamente combinando los datos obtenidos hasta entonces sobre él, los descubrimientos de Chargaff y la interpretación tridimensional de los espectros de difracción de Rayos X; esto último fue de gran importancia para la consecución de tal modelo, el cual consiste en una doble hélice antiparalela cuyo esqueleto fundamental está formado por las cadenas de azúcar-fosfato, quedando en la parte central las bases, enfrentadas las de una cadena con las de la otra complementaria y formando entre sí puentes de hidrógeno, factor que da estabilidad a la doble hélice. El enfrentamiento de bases es constante; la adenina siempre se enfrenta con la timina y entre sí se forman dos puentes de hidrógeno, y la guanina con la citosina, formándose entre ambas tres puentes de hidrógeno. Esta característica provoca que las dos cadenas sean complementarias. Las dos cadenas de la doble hélice tienen sentidos opuestos, mientras una va en sentido 5' à 3' y la otra lo hace en sentido 3' à 5'. Por eso hablamos del DNA como una doble hélice antiparalela.

Disposición de la unión entre bases formando dos puentes de hidrógeno entre adenina –timina y tres puentes de hidrógeno entre citosina - guanina.


Estructura de doble hélice a derechas del DNA.

Estructuras terciaria y cuaternaria

Teniendo en cuenta que la longitud de una hebra de DNA humano es de varios metros, por necesidad debe adoptar otras estructuras para poder estar en el interior celular. Estas estructuras, terciaria y cuaternaria, permiten el empaquetamiento del DNA formando los cromosomas. En las células eucariotas existen varios cromosomas y en los procariotas, existe un DNA empaquetado denominado seudocromosoma.

ESTRUCTURA DEL RNA
El RNA generalmente está formado por una sola cadena de nucleótidos, aunque existen algunos virus que poseen RNA de doble cadena.
Los ácidos ribonucleicos no sólo pueden tener información propia, sino que constituyen la herramienta para la conversión de la información contenida en el DNA en proteínas específicas.

PROPIEDADES DEL DNA
Las hebras del DNA que forman la hélice tienen orientaciones opuestas: una va en la dirección 5´-3´y su complementaria en la 3´-5´. La ruptura de los puentes de hidrógeno por calor, álcali o diversos compuestos químicos, produce la separación física de las dos hebras del DNA en un proceso denominado desnaturalización. La desnaturalización por calor es total a los 90°C y por álcali a pHs superiores a 11,3. En ambas casos el proceso es reversible, y al desaparecer el agente desnaturalizante se produce la renaturalización de la molécula, esto es, la re-adquisición de la estructura helicoidal perdida. ´
El proceso de desnaturalización va seguido por un aumento de la absorción de luz ultravioleta (260 nm) denominado efecto hipercrómico.
Otro concepto interesante de definir es el de temperatura de fusión (Tm), que es la temperatura a la que la mitad de las moléculas de una solución de ácido nucleico, han pasado a estado desnaturalizado. Esta temperatura depende del número de pares G-C que existan en la molécula de ácido nucleico. Cuando mayor sea este mayor será la Tm.


FUNCIONES DE LOS ÁCIDOS NUCLEICOS

· DNA
Su función principal consiste en la conservación de la información de la célula u organismo que lo contiene y la transmisión de esta información al replicarse.


· RNA
En algunos virus su función es contener y transmitir información. Pero, como hemos citado anteriormente, su función más importante consiste en la conversión de la información contenida en el DNA en proteínas específicas. Para ello existen varios tipos de RNA: RNA mensajero (RNAm), RNA transferente (RNAt) y RNA ribosómico (RNAr).


DOTACIÓN GENÉTICA DE LOS VIRUS Los virus pueden tener DNA duplex, DNA monocatenario, RNA monocatenario o RNA duplex. En algunas ocasiones, el genoma vírico dispone de la información biológica necesaria para que la maquinaria de la célula a la que parasita trabaje para él, y en otras posee la información para realizar por sí mismo las diferentes funciones para su replicación.




DOTACIÓN GENETICAS DE LAS BACTERIAS
Las bacterias, al igual que los organismos eucariotas poseen los dos tipos de ácidos nucleicos antes citados: DNA, componente de su único cromosoma, y los diferentes ácidos ribonucleicos (RNAr, RNAt, RNAm). Además, las bacterias también tienen cierta cantidad extra de DNA que suele encontrarse circularizado y repetido varias veces, denominado DNA extracromosómico o DNA plasmídico y, aunque puede no contener una información específica (plásmido críptico), normalmente codifica factores de resistencia a los antimicrobianos, como b-lactamasas, etc.


Bacteria DNA plasmídico DNA cromosómico

DNA plasmídico

Dotación genómica de una bacteria.



CROMATINA Y CROMOSOMAS
El DNA nunca está desnudo. En eucariotas interacciona con una gran variedad de proteínas, se espiraliza y condensa para formar la cromatina y los cromosomas.

Los cromosomas constituyen el orden superior de empaquetamiento del DNA y se pueden visualizar al microscopio óptico. La unidad estructural por debajo del cromosoma es la fibra de cromatina que se puede visualizar al microscopio electrónico. Esta fibra está compuesta por 6-7 nucleosomas por vuelta. Cada nucleosoma es un disco formado por un octámero de proteínas básicas denominadas histonas, donde exteriormente se enrolla el DNA.



REPLICACION DEL DNA

Como dijimos anteriormente, el DNA está formado por dos hélices complementarias unidas por enlaces débiles de puentes de hidrógeno que pueden romperse y volverse a formar simplemente calentando y enfriando. A estos procesos se les llama respectivamente desnaturalización y renaturalización del DNA.

Partiendo de este concepto y de manera muy esquemática, la replicación del DNA en la naturaleza consiste en:

1. Separación de las dos cadenas que forman la doble hélice, de lo cual se encargan enzimas y proteínas que se encuentran en la célula eucariótica.
2. Unión de los cebadores ('primers' o iniciadores) de RNA en una de las hebras separadas. (3'®5')
3. Unión de la polimerasa a los lugares donde se encuentra el 'primer' para comenzar a copiar de manera progresiva la hebra de DNA, ya que la polimerasa necesita un cebador que le indique dónde empezar, por ser incapaz de copiar DNA monocatenario.
El sentido de la síntesis es siempre 5' à 3'.
4. Constitución de las nuevas copias siempre formadas por una hebra madre y otra hija, por lo que al proceso se le denomina replicación semiconservativa del DNA.
De esta forma, de un DNA parental, tras su replicación, se obtienen dos moléculas hijas exactamente iguales.



Horquilla replicativa del DNA con todas las enzimas implicadas en la síntesis. Es necesaria la existencia de un 'primer' para que la DNA polimerasa de E. coli inicie cadenas de novo. Este 'primer' es proporcionado por una RNA polimerasa llamada primasa, la cual en asociación con un complejo de proteínas llamado primosoma sintetiza una cadena corta de RNA. La DNA polimerasa III puede utilizar este 'primer' para continuar la síntesis de DNA. Una proteína llamada helicasa (originalmente llamada rep) es necesaria para desenlazar y abrir la hélice de DNA para permitir la replicación. Las proteínas de enlace a ssDNA se encargan de estabilizar las regiones de simple cadena que se forman transitoriamente durante el proceso de replicación. La DNA polimerasa puede sintetizar DNA en la dirección 5´ ® 3´, por lo que una de las hebras debe ser sintetizada discontinuamente, esto lleva a la formación de cortas cadenas de DNA con huecos entre ellas que deben ser completados por la acción de la DNA polimerasa I y unidos por la acción de una DNA ligasa.

DOGMA CENTRAL DE LA BIOLOGIA MOLECULAR
¿Cómo hace una molécula de DNA para codificar una proteína?


transcripción traducción
DNA RNA PROTEINA


Transcripción: La información del DNA es transferida al RNAm, que es sintetizado utilizando como molde el DNA original y dirigido por la holoenzima RNA polimerasa. Este RNAm será transportado desde el núcleo a los ribosomas que se encuentran en el citoplasma.
Traducción: La factoría celular responsable de la síntesis de proteínas es el ribosoma. La molécula especifica que va a trasladar los aminoácidos (componentes elementales de las proteínas) siguiendo las pautas dictadas por el RNAm es el RNAt. Cada RNAt tiene un anticodon especifico (formado por tres bases).



Una proteína cargada denominada aminoacil tRNA sintetasa es la encargada de unir el aminoácido correcto correspondiente al anticodon a una posición de anclaje. De esta manera a partir de una señal de iniciación en el RNAm (codon ATG) comienza la síntesis, y el primer aminoácido transportado por el RNAt y correspondiente a este codon es la metionina. Este primer paso se denomina iniciación de la traducción y tiene lugar en una posición concreta del ribosoma denominada aminoacil (A). Posteriormente este RNAt junto con su aminoácido correspondiente salta a una posición contigua denominada peptidil (P)y llega un nuevo RNAt con el correspondiente aminoácido para anclarse en su codon y se sitúa en la posición A que ha quedado libre. Entre ambos aminoácidos se establece una unión peptídica y el RNAt de la posición P es liberado, comenzando el proceso de nuevo. Este proceso de elongación continua hasta llegar a un codon de parada.




Una vez sintetizada la proteína pueden haber modificaciones postranscripcionales (cortes por enzimas proteolíticas, fosforilaciones, glicosilaciones etc...

LA BELLEZA DE LAS MUTACIONES
Sabemos que cada gen es una secuencia de ácido nucleico que transporta información representando un polipeptido particular. Un gen es una entidad estable, pero puede sufrir un cambio en su secuencia. A ese cambio se le llama mutación. Sin embargo las mutaciones son importantes ya que nuestro medio sufre cambios constantes y nosotros debemos cambiar con ellos o quedaremos obsoletos y moriremos.
Uno de los mecanismos de cambio es a nivel del DNA. Las mutaciones pueden dar lugar a nuevos genes y funciones que adapten nuestro organismo a los cambios del medio ambiente en el que vive.

Hay distintos tipos de mutaciones:
Mutaciones cromosómicas:
Translocaciones: Implican un intercambio de grandes fragmentos de DNA entre dos cromosomas diferentes.
Inversiones: Aparecen cuando una región del DNA cambia su orientación respecto al resto del cromosoma.
Delecciones: Perdida de algún fragmento del cromosoma
No disyunción de los cromosomas
Mutaciones puntuales: Consiste en un simple cambio de una base.
Mutación sin sentido: Crea un codon de parada donde antes no existía.
Mutación de sentido perdido: Cambia el código del RNAm, implicando un cambio en el aminoácido codificado y por tanto en la proteína correspondiente.
Mutación silente: No tiene efecto en la proteína codificada.

ASPECTOS BÁSICOS DE LA BIOLOGIA MOLECULAR (II)
Pocas áreas de la Biología Molecular han permanecido inalteradas con la aparición de una serie de técnicas englobadas dentro del término genérico de Ingeniería Genética y referidas indistintamente como clonaje, DNA recombinante o manipulación genética. Antes del desarrollo de la Ingeniería Genética no era posible aislar un gen concreto eucariótico en cantidades suficientes para su estudio molecular o el de su producto.
LAS ENZIMAS
Existen muchas enzimas que intervienen decisivamente en distintos procesos de la Biologia Molecular. Entre ellas podemos destacar:
Endonucleasas de restricción: Son enzimas que hidrolizan los ácidos nucleicos rompiendo enlaces internucleotídicos del interior de la cadena. Las endonucleasas de restricción son enzimas producidas principalmente por bacterias que hidrolizan enlaces fosfodiester del esqueleto de DNA de doble hebra en secuencias específicas. Las endonucleasas de restricción de tipo II son las más útiles en los métodos de DNA debido a su especificidad de secuencia absoluta, tanto para la reacción de unión como para la de ruptura.

Las enzimas de restricción se denominan con tres o cuatro letras que corresponden a la primera letra del género y a las dos o tres primeras letras de la especie del organismo de procedencia. El número señala el orden cronológico de descubrimiento de esa enzima en esa estirpe.

Casi todas las secuencias nucleotídicas reconocidas por las endonucleasas de restricción poseen un eje de simetría impropio binario, esto es, la lectura de la secuencia en ambas direcciones es la misma, lo que recibe el nombre de palíndromos. La rotura se produce en ambas hebras de DNA siendo esta simétrica respecto al eje binario.

Las endonucleasas de restricción cortan el DNA generando, bien extremos 3´ o 5´ monocatenario, de unos cuatro nucleótidos de longitud, denominados extremos cohesivos, o bien extremos romos.





Polimerasas: Son enzimas capaces de sintetizar DNA o RNA “in vitro”. La mayoría de estas enzimas requieren un molde y sintetizan una molécula complementaria al molde. Las polimerasas utilizadas con mayor frecuencia son: DNA polimerasa I de E. coli, el fragmento de Klenow, transcriptasa inversa (utiliza como molde RNA para convertirlo en DNA), la DNA polimerasa del bacteriofago T7, RNA polimerasa de los bacteriofagos SP6, T7 y T3 y la Taq polimerasa (enzima empleada en la reacción en cadena de la polimerasa). La mayoría de las polimerasas necesitan un pequeño cebador o primer complementario al DNA molde para iniciar la polimerización a partir de ese punto. La transferasa terminal es una polimerasa que no requiere molde y que añade nucleótidos exclusivamente a los extremos de las cadenas preexistentes. Todas ellas requieren Mg2+.

Otras enzimas: Ligasas (une extremos de DNA protuberantes o romos), Fosfatasas (eliminan el fosfato de la región 5´ de los ácidos nucleicos, quinasas (incorporan fosfatos en el extremo 5´ que han dejado las fosfatasas) etc...


LA CLONACION

Consiste en la obtención de un gran número de fragmentos idénticos a partir de uno original. Para ello se aísla primero el fragmento de DNA que se quiere clonar, se liga a un transportador o vector (plásmidos, fagos , cósmidos etc..) que tras introducirlo dentro de una célula va a permitir su replicación por cultivo. Una vez replicado considerablemente se recupera junto con el vector correspondiente y posteriormente se le separa del vector, obteniendo como resultado un gran número de copias del fragmento de interés.




LA ELECTROFORESIS
Es un método que permite la separación de moléculas en base a su tamaño. Esta separación se realiza en un gel, que es una malla compleja de moléculas poliméricas. Los geles pueden ser de agarosa o poliacrilamida. La agarosa es conveniente para separar fragmentos de ácidos nucleicos en el rango desde unos pocos cientos, hasta aproximadamente 20000 pares de bases. La poliacrilamida es preferible para la separación de fragmentos más pequeños de ácidos nucleicos.
El fundamento de esta separación está basado en que las moléculas de ácidos nucleicos están cargadas negativamente (al pH y condiciones del tampón en el que se encuentran) y al someterlas a un campo eléctrico migran hacia el polo positivo de este a través del gel, a velocidades que dependen de sus tamaños: una molécula pequeña puede seguir su camino a través del gel más fácilmente que una molécula grande. Las velocidades de migración de las moléculas de ácidos nucleicos, son inversamente proporcionales a los logaritmos de sus pesos moleculares (Aaij y Borst). La detección tras la migración se realiza fácilmente gracias al empleo de un colorante intercalante (se intercala entre las bases de los ácidos nucleicos) que contiene el propio gel y es visualizado al emitir luz visible cuando el gel se ilumina con luz ultravioleta. Un factor a tener en cuenta para valorar la migración de los ácidos nucleicos en un gel además de su tamaño es la configuración espacial que adopte la molécula.


El peso molecular de los ácidos nucleicos se mide con las siguientes unidades:

· DNA: en pares de bases o bp.
· RNA : en nucleótidos o nt.